Oil-Immersion Flow Imaging Microscopy for Quantification and Morphological Characterization of Submicron Particles in Biopharmaceuticals

Krause N, Kuhn S, Frotscher E, Nikels F, Hawe A, Garidel P, Menzen T.

Flow imaging microscopy (FIM) is widely used to analyze subvisible particles starting from 2 μm in biopharmaceuticals. Recently, an oil-immersion FIM system emerged, the FlowCam Nano, designed to enable the characterization of particle sizes even below 2 μm. The aim of our study was to evaluate oil-immersion FIM (by using FlowCam Nano) in comparison to microfluidic resistive pulse sensing and resonant mass measurement for sizing and counting of particles in the submicron range. Polystyrene beads, a heat-stressed monoclonal antibody formulation and a silicone oil emulsion, were measured to assess the performance on biopharmaceutical relevant samples, as well as the ability to distinguish particle types based on instrument-derived morphological parameters. The determination of particle sizes and morphologies suffers from inaccuracies due to a low image contrast of small particles and light-scattering effects. The ill-defined measured volume impairs an accurate concentration determination. Nevertheless, FlowCam Nano in its current design complements the limited toolbox of submicron particle analysis of biopharmaceuticals by providing particle images in a size range that was previously not accessible with commercial FIM instruments.

AAPS Journal 2021 JAN

https://rdcu.be/cc3Kn